Global stability of discretized Anosov flows

نویسندگان

چکیده

The goal of this article is to establish several general properties a somewhat large class partially hyperbolic diffeomorphisms called discretized Anosov flows. A definition for these systems presented and proven be equivalent with the introduced in [1], as well notion flow type [13].The set flows shown $ C^1 $-open closed inside diffeomorphisms. Every dynamically coherent plaque expansive. Unique integrability center bundle happen whole connected components, notably ones containing time 1 map an flow. For result on uniqueness invariant foliation obtained.Similar results are seen admitting uniformly compact extending studies initiated [6].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periods of discretized linear Anosov maps

Integer m m-matrices A with determinant 1 de ne di eomorphisms of the m-dimensional torus Tm = (IR= Z)m into itself. Likewise, they de ne bijective self-maps of the discretized tori ( Z=n Z)m = ( Zn)m. We present estimates of the surprisingly low order (or period) PerA(n) of the iteration Ar; r = 1; 2; 3; . . ., on the discretized torus ( Zn)m. We obtain PerA(n) 3n for dimension m = 2. In the s...

متن کامل

On Contact Anosov Flows

The study of decay of correlations for hyperbolic systems goes back to the work of Sinai [36] and Ruelle [32]. While a manifold of results were obtained thru the years for maps, some positive results have been established for Anosov flows only recently. Notwithstanding the proof of ergodicity, and mixing, for geodesic flows on manifolds of negative curvature [15, 1, 35] the first quantitative r...

متن کامل

Anosov Flows of Codimension One

1995 The dissertation of Slobodan Simi c is approved, and is acceptable in quality and form for publication on microolm: Chair Date Date Date 1 Abstract Anosov Flows of Codimension One The main goal of this dissertation is to show the existence of global cross sections for certain classes of Anosov ows. Let be a C 2 codimension one Anosov ow on a compact Riemannian manifold M of dimension great...

متن کامل

Stability of Anosov Diffeomorphisms

Definition 1. Let < , > be a C∞ Riemannian metric on M and | · | its induced norm on TxM for each x ∈ M . We say that f ∈ D is Anosov if 1. the tangent bundle of M splits in a Whitney direct sum of continuous subbundles TM = E ⊕ E, where E and E are Df -invariant, 2. there exists constants c, c′ > 0 and 0 < λ < 1 such that |Dfn xv| < c λn|v| |Df−n x w| < c′ λn|w| for all x ∈ M , v ∈ E x, and w ...

متن کامل

Lyapunov functions and Anosov flows

We show that if the codimension one Anosov flow Φ on a compact n-manifold M satisfies the so called condition (L), then there is a continuous Lyapunov function g : R → R, where R is the universal covering space of M , such that g strictly increases along the orbits of the lift of Φ and is constant on the leaves of the lift of the strong stable foliation of the “synchronization” (i.e. suitable r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Modern Dynamics

سال: 2023

ISSN: ['1930-5311', '1930-532X']

DOI: https://doi.org/10.3934/jmd.2023016